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Symmetric path integrals for stochastic equations with multiplicative noise

Peter Arnold
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

~Received 1 December 1999!

A Langevin equation with multiplicative noise is an equation schematically of the formdq/dt52F(q)
1e(q)j, wheree(q)j is Gaussian white noise whose amplitudee(q) depends onq itself. I show how to
convert such equations into path integrals. The definition of the path integral depends crucially on the con-
vention used for discretizing time, and I specifically derive the correct path integral when the convention used
is the natural, time-symmetric one whose time derivatives are (qt2qt2Dt)/Dt and coordinates are (qt

1qt2Dt)/2. ~This is the convention that permits standard manipulations of calculus on the action, like naive
integration by parts.! It has sometimes been assumed in the literature that a Stratonovich Langevin equation can
be quickly converted to a path integral by treating time as continuous but using the ruleu(t50)5 1

2 . I show
that this prescription fails when the amplitudee(q) is q dependent.

PACS number~s!: 05.10.Gg, 02.50.Ey
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I. INTRODUCTION

Let j be Gaussian white noise, which I will normalize

^j i~ t !j j~ t8!&5Vd i j ~ t2t8!. ~1.1!

It has long been known that a Langevin equation of the fo

d

dt
qi52Fi~q!1j i ~1.2!

can be alternatively described in terms of a path integra
the form1

P~q9,q8,t92t8!5E
q(t8)5q8

q(t9)5q9
@dq~ t !#expF2E

t8

t9
L~ q̇,q!G .

~1.3!

Here, P(q9,q8,t) is the probability density that the syste
will end up atq9 at time t if it started atq8 at time zero.
However, the exact form ofL depends on the conventio
used in discretizing time when defining the path integr
With a symmetric discretization,2

P~q9,q8,t !5 lim
Dt→0

NE
q(0)5q8

q(t)5q9F)
t

dqtG
3expF2Dt(

t
LS qt2qt2Dt

Dt
,
qt1qt2Dt

2 D G ,
~1.4!

with Lagrangian

1For a review of background material in notation close to t
which I use here, see, for example, Chap. 4 of Ref.@1#. The most
substantial difference in notation is that myF is that reference’s12 f.

2For a discussion of what changes if other discretizations are u
in this case, see Ref.@2#.
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l.

L~ q̇,q!5
1

2V
uq̇1Fu22

1

2
Fi ,i . ~1.5!

Here and throughout, I adopt the notation that indices afte
comma represent derivatives:Fi , j[]Fi /]qj and Fi , jk
[]2Fi /]qj]qk . N is the usual overall normalization of th
path integral, which I will not bother being explicit about.

What has not been properly discussed, to my knowled
is how to correctly form such a symmetrically discretiz
path integral for the case of Langevin equations with mu
plicative noise@meaning noise whose amplitudee(q) de-
pends onq]. Schematically,

d

dt
qi52Fi~q!1eia~q!ja , ~1.6!

with j as before, Eq.~1.1!. I will assume that the matrixeia
is invertible. There are a wide variety of applications of su
equations, but I will just mention one particular example
interest to me, which motivated this work and for which
path integral formulation is particularly convenient: the c
culation of the rate of electroweak baryon number violati
in the early universe@3#.

By itself, the continuum equation~1.6! suffers a well-
known ambiguity. To define the problem more clearly, w
must discretize time and takeDt→0. Specifically, I will in-
terpret Eq.~1.6! in Stratonovich convention, writing

qt2qt2Dt52DtF~ q̄!1e~ q̄!jt , ~1.7!

^jatjbt8&5DtVdabd tt8 , ~1.8!

where

q̄[
qt1qt2Dt

2
. ~1.9!

@The fact that I have labeled the noisejt instead ofjt2Dt in
Eq. ~1.7! is just an inessential choice of convention.# The
Stratonovich equation~1.7! is equivalent to the Itoˆ equation
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qt2qt2Dt52DtF̃i~qt2Dt!1e~qt2Dt!jt, ~1.10!

with

F̃ i5Fi2
V

2
eia, jeja . ~1.11!

I will give two different methods for deriving the corre
sponding path integral. The result is

P~q9,q8,t !5 lim
Dt→0

NE
q(0)5q8

q(t)5q9F)
t

dqtG
3F)

t
deteS qt1qt2Dt

2 D G21

3expF2Dt(
t

LS qt2qt2Dt

Dt
,
qt1qt2Dt

2 D G ,
~1.12!

L~ q̇,q!5
1

2V
~ q̇1F ! igi j ~ q̇1F ! j2

1

2
Fi ,i

1
1

2
eia

21eka,k~ q̇1F ! i1
V

8
eia, jeja,i , ~1.13!

where

gi j [~e21! ia~e21! ja . ~1.14!

This differs from a result previously given by Zinn-Justi3

@1# by the inclusion of the last term inL. Zinn-Justin’s deri-
vation was done in continuous time, resolving ambiguit

using the prescriptionu(t50)5 1
2 , which is known to work

in the case wheree(q) is constant.
Because of the confusion surrounding these issues, I

show how to derive the result in two different ways. First
will follow the standard procedure for directly turnin
Langevin equations into path integrals, but I will be care
to keep time discrete throughout the derivation. The sec
method will be to start from the Fokker-Planck equati
equivalent to the Langevin equations~1.7! and~1.10! and to
then turn that Fokker-Planck equation into a path integ
again using standard methods.

II. DIRECT DERIVATION FROM THE LANGEVIN
EQUATION

Rewrite the discretized Langevin equation~1.7! as

Et2jt50, ~2.1!

wheret is a discrete time index and

Et[e21~ q̄!@qt2qt211DtF~ q̄!#, ~2.2!

3Specifically, Eq.~4.79! of Ref. @1#. See also Ref.@4#, and Sec.
17.8 of Ref.@1#, for a continuum time discussion of formulating th
path integral for this problem using ghosts.
s

ill

l
d

l,

with q̄[(qt1qt21)/2. The corresponding path integral
obtained by implementing these equations, for each valu
t, asd functions, with appropriate Jacobian, integrated o
the Gaussian noise distribution:

P~q9,q8,t !5 lim
Dt→0

NE
q(0)5q8

q(t)5q9F)
t

djt expS 2
jt

2

2VDt D
3dqtd~Et2jt!Gdett8a;t9 iS ]Et8a

]qt9 i
D . ~2.3!

The noise integral then gives

P~q9,q8,t !5E F)
t

dqtGexpS 2
1

2VDt (
t

Et
2D

3dett8a;t9 iS ]Et8a

]qt9 i
D . ~2.4!

In our case, Eq.~2.2!, the determinant takes the form

det
t8a;t9 i

S ]Et8a

]qt9 i
D 5det1

]E1

]q1
0 0 0

]E2

]q1

]E2

]q2
0 0

0
]E3

]q2

]E3

]q3
0

0 0
]E4

]q3

]E4

]q4

� �

2
5)

t
detaiS ]Eta

]qt i
D . ~2.5!

The registration of the diagonals is determined by the na
of the initial boundary condition, which is thatq0 is fixed.
From Eq.~2.2!, we then have

det
t8a;t9 i

S ]Et8a

]qt9 i
D 5)

t
det
ai

@~e21!ai1
1
2 ~e21!ak,i

3~qt2qt21!k1Dt 1
2 ~e21F!a,i #

5H)
t

det@e21~ q̄t!#J
3H)t

det
i j

@d i j 1
1
2 eja~e21!ak,i

3~qt2qt21!k1Dt 1
2 eja~e21F!a,i #J ,

~2.6!

where alle’s andF ’s should now be understood as evaluat
at q̄t . Now rewrite the determinants in the last factor of E
~2.6! as exponentials in the usual way, using
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det~11A!5etr ln(11A)5 exp tr@A2 1
2 A21•••#. ~2.7!

To construct a path integral, we need to keep track of
terms in each time step up to and includingO(Dt), but we
can ignore corrections that are higher order inDt. For this
purpose, the size ofqt2qt21 should be treated asO(ADt),
which is the size for which theq̇2 term in the action@the
exponent in Eq.~1.12!# becomesO(1) per degree of free
dom. So, using the expansion~2.7!, we get

det
i j

@d i j 1
1
2 eja~e21!ak,iDqk1Dt 1

2 eja~e21F!a,i #

5 exp$ 1
2 eia~e21!ak,iDqk1Dt 1

2 eia~e21F!a,i

2
1

8
eia~e21!ak,memb~e21!bl,iDqkDql1O„~Dt !3/2

…%.

~2.8!

It is the DqDq term in this equation, which came from th
second-order term in the expansion~2.7!, that will generate
the difference with the result quoted in Ref.@1#. Putting ev-
erything together, we get the path integral Eq.~1.12! with
Lagrangian

L~ q̇,q!5
1

2V
~ q̇1F ! igi j ~ q̇1F ! j2

1

2
Fi ,i1

1

2
eia

21eka,k

3~ q̇1F ! i1
Dt

8
eia~e21!ak,memb~e21!bl,i q̇kq̇l .

~2.9!

We can simplify this by realizing that theq̇kq̇l in the last
term can be replaced by its leading-order behavior inDt.
Specifically, recall thatqt2qt2Dt is orderADt. So one can
go for a large number of discrete time steps 1!N!1/Dt
without any net change inq at leading order inDt. More-
over, the forceF does not have any net effect, at leadi
order inDt, over that number of steps. The result is thatq̇kq̇l
can be replaced at leading order inDt by its average over a
large number of steps, ignoringF and treating the back
ground value ofe(q̄) as constant. The Gaussian integral f
q̇ in ~1.12! and ~2.9! then gives the replacement rule

q̇kq̇l→
V

Dt
~g21!kl ~2.10!

at leading order inDt. This substitution turns Eq.~2.9! into
the result~1.13! presented earlier.

III. DERIVATION FROM FOKKER-PLANCK EQUATION

The Stratanovich Langevin equation~1.7! is well known
to be equivalent to the Fokker-Planck equation

Ṗ5
]

]qi
FV2 eia

]

]qj
~ejaP!1Fi PG , ~3.1!

whereP5P(q,t) is the probability distribution of the system
as a function of time. This is just a Euclidean Schro¨dinger
e

r

equation, and one can transform Schro¨dinger equations into
path integrals by standard methods. Specifically, rewrite
equation as

Ṗ52ĤP, ~3.2!

with the Hamiltonian

Ĥ5
V

2
p̂ieia~ q̂! p̂ jeja~ q̂!2 i p̂•F~ q̂!. ~3.3!

To obtain a path integral with symmetric time discretiz
tion, it is convenient to rewriteĤ in terms of Weyl-ordered
operators. The Weyl order corresponding to a classical
pressionO(p,q,t) is defined as the operatorÔW with

^quÔWuq8&5E
p
eip•(q82q)O„p, 1

2 ~q1q8!,t…. ~3.4!

For the sake of completeness, I will briefly review how
obtain Weyl ordering of operators in simple cases by cons
ering the application of the operators to an arbitrary funct
c(q). For example,

@piA~q!#Wc~q!5^qu@piA~q!#Wuc&

5E
q8

^qu@piA~q!#Wuq8&c~q8!

5E
q8
E

p
eip•(q2q8)piAS q1q8

2 Dc~q8!

5 i E
q8
F ]

]qi8
d~q2q8!GAS q1q8

2 Dc~q8!

52 i
]

]qi8
AS q1q8

2 Dc~q8!U
q85q

52 i H 1

2 F ]

]qi
A~q!G1A~q!

]

]qi
J c~q!.

~3.5!

So

@piA~q!#W5
1

2
$ p̂i ,A~ q̂!%. ~3.6!

One can similarly show that

@pipjA~q!#W5
1

4
ˆp̂i ,$ p̂ j ,A~ q̂!%‰. ~3.7!

Now write the Hamiltonian~3.3! in terms of Weyl-
ordered operators. One finds

p̂•F5@p•F#W2
i

2
Fi ,i , ~3.8!
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p̂ieiap̂jeja5@pg21p#W2 i @eiaeja, j pi #W

1
1

4
~g21! i j ,i j 2

1

2
~eiaeja, j ! ,i . ~3.9!

So

Ĥ5@H~p,q!#W , ~3.10!

with

H~p,q!5
V

2
pg21~q!p2 ipiFFi~q!1

V

2
eia~q!eja, j~q!G

1u~q!, ~3.11!

u52
1

2
Fi ,i1

V

8
~g21! i j ,i j 2

V

4
~eiaeja, j ! ,i . ~3.12!

The usual derivation of the path integral then gives

P~q9,q8,t !5 lim
Dt→0

E
q(0)5q8

q(t)5q9F)
t

dptdqt

~2p!d Ge2S(p,q),

~3.13!

S~p,q!5(
t

H 2 ipt•~qt2qt21!1DtHS pt ,
qt1qt21

2 D J .

~3.14!

Doing thep integrals with our Hamiltonian~3.11! then re-
produces the path integral~1.4! with Lagrangian
-

.

L~ q̇,q!5
1

2V
~ q̇i1Fi1

1
2 Veiaeka,k!gi j ~ q̇ j1F j1

1
2 Vejbelb,l !

1u~q!. ~3.15!

Now note that

~g21! i j ,i j 52eiaeja,i j 1eia,ieja, j1eia, jeja,i , ~3.16!

and so

V

8
~eiaeka,k!gi j ~ejbelb,l !1u

5
V

8
eia,ieja, j1F2

1

2
Fi ,i1

V

8
~g21! i j ,i j 2

V

4
~eiaeja, j ! ,i G

52
1

2
Fi ,i1

V

8
eia, jeja,i . ~3.17!

Combining Eqs.~3.15! and~3.17! reproduces the Lagrangia
~1.13! asserted in the introduction.
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