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Symmetric path integrals for stochastic equations with multiplicative noise

Peter Arnold
Department of Physics, University of Virginia, Charlottesville, Virginia 22901
(Received 1 December 1999

A Langevin equation with multiplicative noise is an equation schematically of the tigfdt=—F(q)
+e(q)é wheree(q)é is Gaussian white noise whose amplituefg]) depends org itself. | show how to
convert such equations into path integrals. The definition of the path integral depends crucially on the con-
vention used for discretizing time, and | specifically derive the correct path integral when the convention used
is the natural, time-symmetric one whose time derivatives age-¢;_,;)/At and coordinates areq(
+0;_ar)/2. (This is the convention that permits standard manipulations of calculus on the action, like naive
integration by part$.It has sometimes been assumed in the literature that a Stratonovich Langevin equation can
be quickly converted to a path integral by treating time as continuous but using thé(ted®)= % | show
that this prescription fails when the amplitudég) is q dependent.

PACS numbes): 05.10.Gg, 02.50.Ey

I. INTRODUCTION _ 1 . 1
L(q,q)=m|q+F|2— SFii- (1.9
Let £ be Gaussian white noise, which | will normalize as

, , Here and throughout, | adopt the notation that indices after a
(&) =Qa;(t—t"). (1.9 comma represent derivativest; j=9F;/dq; and F; ji
) ) = 9°F; 1dd;0q, . N is the usual overall normalization of the
It has long been known that a Langevin equation of the fory iy integral, which | will not bother being explicit about.
What has not been properly discussed, to my knowledge,
(1.2 is how to correctly form such a symmetrically discretized
path integral for the case of Langevin equations with multi-
plicative noise[meaning noise whose amplitudgq) de-
can be m.?letern::xtively described in terms of a path integral opends org]. Schematically,
the for

d —
pric i —Fi(q)+ ¢

d
o (at=a v gidi= ~Fi(@+ea(a)éa, (1.9
P =)= [ T dglen - [ L@a |
(1.3)  with £ as before, Eq(1.1). | will assume that the matrig;,

is invertible. There are a wide variety of applications of such
Here, P(q",q’,t) is the probability density that the system equations, but | will just mention one particular example of
will end up atq” at timet if it started atq’ at time zero. interest to me, which motivated this work and for which a
However, the exact form of depends on the convention path integral formulation is particularly convenient: the cal-
used in discretizing time when defining the path integral.culation of the rate of electroweak baryon number violation

With a symmetric discretizatioh, in the early univers¢3].
By itself, the continuum equatiofil.6) suffers a well-
" t)= i a(t)=q" d known ambiguity. To define the problem more clearly, we
e g must discretize time and taket— 0. Specifically, | will in-
P(q".q t)_A:ToN ao=q'| o O discretize ti d takiet— 0. Specificall il i
terpret Eq.(1.6) in Stratonovich convention, writing
Ot — i at et i—at _ o
Xex’{‘“? L( At 2 ) ’ G~ G- ae= — AtF(a) +e() &, 1.7
1.4 (Earkor) = A a0, (18
with Lagrangian where
— Ot 0i—at 19
YFor a review of background material in notation close to that a= 2 : (1.9

which | use here, see, for example, Chap. 4 of Ref. The most
substantial difference in notation is that ryis that reference’sf. [The fact that | have labeled the noigeinstead of,_ ,, in

2For a discussion of what changes if other discretizations are useldg. (1.7) is just an inessential choice of conventipithe
in this case, see Reff2]. Stratonovich equatiofl.?) is equivalent to the Tt@quation
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Ot— Ot—at=— Atr:i(Qt—m) +e(g_ap &, (1.10 with q=(q,+q,-1)/2. The corresponding path integral is
obtained by implementing these equations, for each value of
with 7, as é functions, with appropriate Jacobian, integrated over
the Gaussian noise distribution:

&
H dffeXp< N 29At)

ﬂET’a
deL”a;T"i(a—> . (23

i

- Q
Fi:Fi—Eeia’jeja. (11])

t — "
P 0= lim qu“ ‘
At—0 Ja(0)=q’

I will give two different methods for deriving the corre-
sponding path integral. The result is

P, 1) = lim qumzq [H da

At—0 Ja(0)=q’| t

X dqré(Er_ fr)

The noise integral then gives

11 dete(—q‘Jrq‘“”1 1
"ot _ _ 2

X

-0 + 0
Xexp{—Atz L(Qt Ot At7qt At At) , OE...
t At 2 xdetTra;T/ri . (24)
99 i
(1.12
. . In our case, Eq(2.2), the determinant takes the form
L(9,0)= 55 (A+F)igi(a+F);— 5 Fi, JE
24 2 o 0 o
1. ) h
+ 58 Ckak(d+F)it g€ i€ (1.13 JE, IE, o o
I ddy 992
where det ( ; T'a) =det 0 JE; JEj 0
_ _ T’ A/ q,TH' P P
gij=(e Dia(e Vja- (114 e T 9% 9%
o . _ _ _ JE, JE,
This differs from a result previously given by Zinn-Justin 0 0 P
[1] by the inclusion of the last term ih. Zinn-Justin’s deri- 93 794

vation was done in continuous time, resolving ambiguities
using the prescriptio®(t=0)= 3, which is known to work 9E
in the case where(q) is constant. =H detai< p Ta). (2.5
Because of the confusion surrounding these issues, | will 4 A

show how to derive the result in two different ways. First, |
will follow the standard procedure for directly turning
Langevin equations into path integrals, but | will be carefu
to keep time discrete throughout the derivation. The secon
method will be to start from the Fokker-Planck equation

The registration of the diagonals is determined by the nature
Iof the initial boundary condition, which is thay, is fixed.
Erom Eq.(2.2), we then have

equivalent to the Langevin equatiofks7) and(1.10 and to
then turn that Fokker-Planck equation into a path integral,
again using standard methods.

L=
) =] def(e Y)u+ 2 Mk,
q i T ai

X(qr_qT*l)k—i—At%(e_lF)a,i]
Il. DIRECT DERIVATION FROM THE LANGEVIN

EQUATION — { H de{el(q_f)]]
Rewrite the discretized Langevin equatidn?) as !
E,—&,=0, (2.1 X[H def 5; + z€ja(€™ Y ax;
T ”

wherer is a discrete time index and
_ _ X(qr—qfl)ﬁAt%eja(e1F)a,i]],
E,=e 'a)[d,~q, 1+ AtF(q)], (2.2
(2.6

Sspecifically, Eq.(4.79 of Ref. [1]. See also Ref{4], and Sec. erre alle’s andF’s should now be understood as evaluated

17.8 of Ref[1], for a continuum time discussion of formulating the atq,. Now rewrite the determinants in the last factor of Eq.
path integral for this problem using ghosts. (2.6) as exponentials in the usual way, using
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de(1+A)=e""I+A = exptf A—1A2+...]. (2.7 equation, and one can transform Sainger equations into
path integrals by standard methods. Specifically, rewrite the
To construct a path integral, we need to keep track of thequation as
terms in each time step up to and includi®gAt), but we
can ignore corrections that are higher ordenAin For this P=—HP, (3.2
purpose, the size af,—q,_; should be treated B (A1),
which is the size for which tha'aq2 term in the actior[the  with the Hamiltonian
exponent in Eq(1.12] becomesO(1) per degree of free-
dom. So, using the expansid®.7), we get 0. L L
H= > Pi€ia(Q)p;€ja(q) —ip-F(q). 33
def 5 +3€a(e HakiAget Atseja(e T F) ;]
ij

To obtain a path integral with symmetric time discretiza-

= exp{%eia(efl)ak,iAqur At%eia(ele)a,i tion, it is convenient to rewritél in terms of Weyl-ordered
1 operators. The Weyl order corresponding to a classical ex-
—geia(e_1)ak,memb(e_l)b|,iAQKAQ|+O((At)3/2)}- pressionO(p,q,t) is defined as the operatdh,, with
(2.9

<QIOvv|q’>=fe""(q"q’O(p,%(q+q'),t). (3.4
It is the AqAq term in this equation, which came from the P
second-order term in the expansit?), that will generate
the difference with the result quoted in Rgt]. Putting ev-
erything together, we get the path integral Ef.12 with
Lagrangian

For the sake of completeness, | will briefly review how to
obtain Weyl ordering of operators in simple cases by consid-
ering the application of the operators to an arbitrary function
¥(q). For example,

. 1 . . 1 1
L(9.9)= 5 (a+F)ig;(Q+F);= 5Fii+ S e exax [PiA(e) Jwi(a) = (all PiA(G) Jwl )

:fq,<q|[piA(Q)]w|Q’>¢(ql)

. At L
X(q+F)i+§eia(e )akm€mb(€” pr,idkd-

L g+q’ )
2.9 = fq,J’pelP (a-q )DiA(—z )(/,(q )
We can simplify this by realizing that thg.q, in the last

term can be replaced by its leading-order behavioAin n ié —anla q+q’ ,
Specifically, recall thaty,— g, »; is order/At. So one can = Py (9=a") > |#a)
go for a large number of discrete time stepsN<<1/At '
without any net change ig at leading order imAt. More- 9 q+q’
over, the forceF does not have any net effect, at leading =1 FA(T) ¥(q")
order inAt, over that number of steps. The result is tha, ! a'=a
can be replaced at leading orderAn by its average over a 11 o d
large number of steps, ignoring and treating the back- =13 (9—in(Q) +A(Q)(7—qi (q).
ground value of(q) as constant. The Gaussian integral for 3.5
q in (1.12 and (2.9 then gives the replacement rule ’
.0 - So
QkQ|—>H(9 )kl (2.10 L
. . . . . A Iw=5{pi AQ)}. (3.6
at leading order im\t. This substitution turns Ed2.9) into LA Iw 2{p' (@)
the result(1.13 presented earlier.
One can similarly show that
I1l. DERIVATION FROM FOKKER-PLANCK EQUATION
1. . N
The Stratanovich Langevin equati¢h.?) is.well known [piij(q)]W=Z{pi AP; AQ)}}. 3.7
to be equivalent to the Fokker-Planck equation
g 1Q J Now write the Hamiltonian(3.3) in terms of Weyl-
P= o 5eiaa_qj(ejap)+|:ip : (3.)  ordered operators. One finds
whereP=P(q,t) is the probability distribution of the system b-F=[p-Fly— i—F» ' 3.8
as a function of time. This is just a Euclidean Salinger P P-Flw= 5 i '
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Pi€iaPi€a=[PY Plw—il[€aja;Pilw
1 1
+z(g )ij,ij_z(eiaeja,j),i- (3.9
So
H=[H(p,q)]w. (3.10
with

o , Q
H(p,q)=§pg (Qp—ip Fi(Q)""Eeia(Q)eja,j(Q)

+u(q), (311)
1 Q Q
u=—5Fiit g9 Dijij~ 7 (Cabaj)i- (312

The usual derivation of the path integral then gives

—q" d Td .
P(q".q",t)= lim fq(t) 1 D_Cz e~ S(P.a),
at—o0Ja@=a'| 7 (2m)
(3.13
. 9, +0,
S(paQ):E (_Ipr'(qr_qr—1)+AtH(prle)}.
(3.14

Doing thep integrals with our Hamiltoniar{3.11) then re-
produces the path integrél.4) with Lagrangian
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. 1 . .
L(CLCI):E(CIDLFiJr 306,662 0i(a;+Fj+3Qeje 1)

+u(q). (3.15
Now note that
(97 Dij i = 2€ia€a,ij + €ia,i€a, T €iaj€ai, (3.16

and so

QO
g (BiaCka k) Gij (€jp€ip,) + U

Q 1.0 0
=g 8ai8ait| ~5Fiit g (9 ijij— 7 (Cialja)
1 Q
:—EFi'i—kgeiaJeja,i. (3.17

Combining Eqgs(3.15 and(3.17 reproduces the Lagrangian
(1.13 asserted in the introduction.
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